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Abstract
A popular approximation in lattice gauge theory is an exdtaiion in the number of fermion species
away from the four fold degeneracy natural with the staghjéeemions formulation. | show that at finite
lattice spacing and for an odd number of flavors this exti@pm misses terms which, on general principles,
must be present in the continuum theory. For a correct camtmlimit, this forces unphysical singularities
in parameter regions where continuum physics is smooth Amhygsical particles are massive. These
singularities are not expected with other lattice reguatd=inally, | argue that unnatural constraints on

certain correlation functions appear even when all quarksreassive.
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Lattice gauge theory provides a powerful tool for the inigeggion of non-perturbative phe-
nomena in strongly coupled field theories, such as the quamkiring dynamics of the strong
interactions. However numerical calculations are quitepoter intensive, strongly motivating
approximations that reduce this need. One such, the valmngeenched approximation [1, 2],
introduces rather uncontrolled uncertainties, but with ¢inowth in computer power, its use is
currently being eliminated.

Another popular approximation [3, 4] arises from the simip}i of the staggered fermion for-
mulation [5—-7]. With only one Dirac component on each slie,large matrix inversions involved
with conventional algorithms are substantially fastenttdth other fermion formulations. How-
ever the approach and its generalizations are based on r@tdiation method that inherently
requires a multiple of four fundamental fermions. The reasftor this are related to the can-
cellation of chiral anomalies. To apply the technique to phgsical situation of two light and
one intermediate mass quark requires an extrapolation dothe number of fermions. As usu-
ally implemented, the approach involves taking a root offémmion determinant inside standard
hybrid Monte Carlo simulation algorithms. This step hasheen justified theoretically. The pur-
pose of this note is to show that at finite lattice spacing tédiction inherently misses certain
required terms in the chiral expansion for the continuunoteTo reproduce these terms in the
continuum limit requires the introduction of unphysicalgularities which persist at finite volume
and in regions of parameter space where there are no physasaless particles. Even in regions
where the physical fermion determinant is positive defjriite procedure imposes unexpected and
non-trivial constraints on correlations between certaimmifion bilinears.

The method has its roots in the “naive” discretization ofdleevatives in the Dirac equation
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with a denoting the lattice spacing. Fourier transforming to motue space, the momentum
becomes a trigonometric function

pu - %(eiapu _ eﬁiapﬂ) = gSin(apy) (2)

The natural range of momentum-ist/a < p, < 1/a. The doubling issue is that the propagator
has poles not just at small momentum, but also when any coempaneartin magnitude. These
all contribute as intermediate states in Feynman diagramshe theory effectively has'2= 16

fermions. | refer to these multiple states as “doublers™flavors” in the following discussion.
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Note that the slope of the sine functionrais opposite to that at 0. This can be absorbed by
changing the sign of the corresponding gamma matrix. Thésgas the sign ofs as well; so,
the doublers divide into different chirality subsets. Thatedminant of the Dirac operator is not
simply the sixteenth power of a single determinant.

Without a mass, the naive action has an exact chiral symroéthe kinetic term under

Y — e'eVSLp
¥ — gen (3)

The conventional mass term is not invariant under this iatat

My Y — myYcog20) + imPysysin(20) 4)

Thus any mass term of the form on the right hand side of thédicel can have theta rotated away.
This is consistent with known anomalies since this is initgal flavor non-singlet chiral rotation.
The different species use different signs yer As special cases, in this theary —m, and+iym
are all physically equivalent.

To arrive at the staggered formulation, note that whenefemaion hops between neighboring
sites in directiory, it picks up a factor of,. An arbitrary closed fermion loop on a hypercubic
lattice gives a product of many gamma factors, but any pderccomponent always appears an
even number of times. Bringing them through each other usiigcommutation, the net factor
for any loop is proportional to unity. Gauge fields don’t cparthis fact since they just involve
J(3) phases on the links. So if a fermion starts in one spinor car@py it returns to the same
component after the loop. The 4 Dirac components give 4 ied@pnt theories. There is an exact
U (4) symmetry. Without a mass term, this is actually an exbfd) ® SJ (4) chiral symmetry
[8].

Staggered fermions single out one component on each sitehwbmponent depends on the
gamma factors to get to the site in question from one staditeg Ignoring the other compo-
nents reduces the degeneracy from 16 to 4. The process mimgsous oscillating phases from
the gamma matrix components. One explicit projection tleabenplishes this is (using integer

coordinates and the conventign= —y1»)3y4 with Euclidean gamma matrices)

pP— P2 — % (1+iy1y2(_1)X1+X2 +iy3y4(_l>X3+X4 + ys(_l)X1+X2+X3+X4) (5)

Note that some degeneracy must remain. No chiral breakingeap in the action, and all infinities

are removed. Thus there is no way for the anomaly to appearcdnceled between the remaining
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species. Furthermore, the naive replacengent s exactly relates the theory with massand
mass—m. With 4 flavors this symmetry is allowed since there is a fladochiral rotation that
gives it. The doublers still are in chiral pairs.

To proceed | sketch how a typical simulation with fermioneqaeds. For a generic fermion
matrix D, the goal of a the simulation is to generate configuratiorgaofe field#\ with a proba-
bility

P(A) O exp(—S(A) +N¢Tr log(D(A))) (6)
HereS; is the pure gauge part of the action. With some algorithm#iaddl commuting “pseudo-
fermion” fields are introduced [9, 10], but these detailsraveimportant to the following discus-
sion. With staggered or naive fermions the eigenvalu&salf appear in complex conjugate pairs;
thus, the determinant is non-negative as necessary foibalpitity density.

In hybrid Monte Carlo schemes [11] auxiliary “momentum”iedlesP are introduced, one for

each degree of freedom & The above distribution is generalized into
P(A,P) O exp(—Sy(A) + N Tr log(D(A) + Y P?/2) 7)

As the momenta are Gaussian random variables, it is easynera@je a new set at any time. For
the gauge fields one sets up a “trajectory” in a fictitious “Mo€arlo” time variabler and uses

the exponentin (7) as a classical Hamiltonian

H=SPR?/2+V(A) 8)
with the “potential”
V(A) = —(A) +N¢Trlog(D(A)). 9)
The Hamiltonian dynamics
d .
@ =R
P =R(A) =25 (10)

conserves energy and phase space. Under such evolutioguitibréum ensemble stays in equi-
librium, a sufficient condition for a valid Monte Carlo algibhm. After evolution along a trajectory
of some lengttt, discretized time stepSt can introduce finite step errors and give a small change
in the “energy.” The hybrid Monte Carlo algorithm correats this with a Metropolis accept/reject

step on the entire the trajectory. The trajectory lengthsted size are parameters to be adjusted

4



for reasonable acceptance. After the trajectory one caestethe momenta by generating a new

set of gaussianly distributed random numbers. The proee@gpuires the “force” term
_ VA _IgA) ~19D(A)
F(A) =— A~ 9A —N;Tr(D A ) (11)

To calculate the second term requires an inversion of thesgpaatrixD applied to a fixed vector.

Standard linear algebra techniques such as a conjugatewgtratyorithm can accomplish this. In
practice this step is the most time consuming part of therdtgo.

Returning to staggered fermions, one would like to elimernthie unwanted degeneracy by a
factor of four. One attempt to do this reduction involves amapolation in the number of flavors.
In the molecular dynamics trajectories for the simulatidrihe gauge field, the coefficient of
the fermionic force term in Eq. (11) is arbitrarily reducedrh N to N; /4, whereN; is the
desired number of physical flavors. Although not provers f@ems reasonable whidpis itself
a multiple of four. The controversy arises for other valuebla

Here | argue that the procedure is an approximation thatiactly predicts certain qualitative
behaviors. The issue is clearest in the chiral limit whenmiKgis odd. For the staggered theory,
the fermion determinant is a function aff. The surviving chiral symmetry gives equivalent
physics for eithemor —m. The primary problem with the extrapolation appears atphbist. It is
well known that with an odd number of flavors, physics has moregtry under changing the sign
of the mass [12—-14]. The most dramatic demonstration ofaiyears in the one flavor theory. In
this case anomalies break all chiral symmetries and no @widdosons are expected. The theory
behaves smoothly as the mass parameter passes througfhertightest meson, call it the’,

acquires a mass through anomaly effects, and the lowest gqudek mass corrections are linear

m?,(m) = m?,(0) +cm (12)

n n
Such a linear dependence in a physical observable is imbegdiaconsistent withm < —m
symmetry.
The one flavor case is perhaps a bit special, but there arspnoblems with the three flavor

situation [14]. Identify the quark bi-linear with an effaet chiral field@,y;, ~ 2. Herea andb
are flavor indices. Th&U (3) ® U (3) chiral symmetry of the massless theory is embodied in the
transformation

- 9/Z0R (13)
with gi,gr € U (3). For positive massy should have an expectation value proportional to the

J(3) identity I. This is not equivalent to the negative mass theory becalige not in SU(3).
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Indeed, for negative mass it is expected that the infinitermal theory spontaneously bred&B
symmetry, with(Z) 0 €2"1/3 [14, 15].

These qualitative effective Lagrangian arguments areeguotverful and general. Another way
to see the one flavor behavior is to start with a larger numbdawors, say 3 or 4, and make
the masses non-degenerate. As only one of the masses gassgghtzero, the behavior for the
lightest meson mimics that in Eq. (12). Extrapolated staggyguarks with their symmetry under
taking any quark mass to its negative will miss the lineanter

Note that with degenerate quarks these arguments becompeshat finite volume. In the in-
finite volume limit the multiflavor massless theory exhilsippntaneous chiral symmetry breaking
and a non-analytic behavior in the massat 0. But at finite volume and with a finite lattice spac-
ing all physical quantities being considered are analyitfee only way the extrapolation fromd;
to N¢ /4 to give correct physics at finite volume would be for it ta@tuce unphysical nonanalytic
terms.

Small real eigenvalues of the Dirac operator are respan$inlthese effects. The odd terms
come from topological structures in the gauge fields [16}.9f0all mass in the traditional contin-

uum discussionD| ~ m" with v the winding number of the gauge field. The condensate
) =3 [(@mIpVe S® TroE (14

receives a contribution going asVf—1 from thev = 1 sector. For the one flavor case, this is an
additive constant. This constant will be missing from theagolated staggered theory because of
the symmetry in EqQ. (3). This phenomenon is also respongibldne fact that a single massless
qguark is not a well defined concept [17].

For the general odd flavor case, the odd winding number teaws the opposite symmetry
under the sign of the mass than the even terms, although vatk ffavors this starts at a higher
order in the mass. For 3 flavors the condensate at finite voluitheisplay a m? correction to
the leading linear behavior. The extrapolation down from staggered 4 flavor theory will not
see this. While the zero modes of the Dirac operator are ssppd at finite volume, they do not
vanish.

This mechanism emphasizes an important distinction betveteggered and other fermion
formulations. With staggered fermions there is no exaaxmelation between the zero modes of
the Dirac operator and the topology of the gauge fields [Kg]lated real eigenvalues of the Dirac

operator are a robust concept for many formulations, sudison [19, 20], domain wall [21],
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and overlap [22] fermions. However this is not expected far $staggered fermions, where the
real part of all eigenvalues is pinned to the mass. As distlabove, the exact chiral symmetry
is actually a flavored chiral rotation. The respective sped¢ransform with different signs for
y5. Because of this, the corresponding zero modes genericatlymix. Small variations in the
gauge field can split the degenerate real eigenvalues aparthie complex plane. Unlike with
the overlap, those gauge configurations where the staggeaag has exactly real eigenvalues is
expected to be a set of measure zero. For all other configneatthe determinant is non-vanishing
and analytic imm? around 0.

While | have shown diseases with the chiral behavior of @di@ed staggered fermions at
finite cutoff, technically | have not proven that these pesh$ survive as the cutoff is removed
[23-25]. Indeed, in field theory we are accustomed to thecwnmutation of certain limits, such
as vanishing mass and infinite volume when a symmetry is ksgngtaneously broken. In that
case the mass and the volume are both infrared issues. Adttilce Is an ultraviolet regulator and
the chiral issues raised here involve long distance phyisissems peculiar for the order of these
limits to affect each other. Nevertheless, suppose thatdake cutoff to zero before taking the
massless limit does give the correct physics. Then the agmumiust introduce singularities that
are not present in the continuum theory.

The issue is again clearest for the one flavor theory, whetkdrcontinuum the condensate,
(@) appropriately renormalized, does not vanish and is smpdtdhaved around m=0. Ana-
Iyticity in the mass is expected with a radius of order theprtene mass-squared over the typical
scale of the strong interactionscq. Now turn on the extrapolated staggered regulatomAt 0O,
(@) must suddenly jump to zero. For every eigenvalue of the stagbfermion matrix at van-
ishing mass, its negative is also an eigenvalue. Thus caafign by configuration the trace of
D~1, and thus the condensate, is identically zero. Furtherntlre to confinement and the chiral
anomaly, this unphysical jump occurs both at finite volumé enthe absence of any massless
physical particles for the continuum theory.

This issue generalizes to the multiflavor theory with nogeteerate quark masses. The pro-
posed regulator forces the condensate associated withiaty gpecies to vanish with the corre-
sponding mass, in contradiction with the continuum behaskpected from effective Lagrangian
analysis. Physical observables at specific points in pasmspace where continuum physics is
smooth are forced to develop infinite derivatives with respethe cutoff as it is removed. Even if

this occurs only in the vicinity of isolated points, this seean absurd behavior for an ultraviolet



regulator and is in strong contrast to more sensible scheowsas Wilson fermions [19].
Despite this highly unphysical behavior, certain auth@# continue to advocate that, while
ugly, the continuum limit could be correct as long as one@wthese singularities. This, however,
requires some rather peculiar relations amongst coroeldtinctions even for quark masses in
regimes where the fermion determinant is expected to bdiy®msiefinite. Consider the case of
two flavor QCD with quark masses, andmy. Complexifying the mass terms in the usual way

> Rema @Y +iIm my PPysy? (15)

a=u,d

the physical theory is invariant under the flavored chirghtion

my, — €9m,
my —>e*i9md (16)

Due to the chiral anomaly, it must not be invariant under thglst chiral rotation

m, — €my,
my — €9my (17)

The symmetry in mass parameter space requires that therstaf the up and down quark masses
be in opposite directions.

Now formulate this theory with two independent staggerethfens, one for the up and one
for the down quark, each reduced using the rooting proceden@m Eq. (5), the corresponding
complexification of the staggered mass term takes the form

S (Rema+iS(j) Im ma) ¢ ()w(j) (18)

a=u,d

with §(j) being+1 depending on the parity of the sife The issue arises from the fact that
that the staggered fermion determinant, and thereforeatieiptegral, are exactly invariant under
m— e%mfor either the up or the down quark. This is too much symmetryarameter space. It
is precisely this extra symmetry that forces the unphysicejularities mentioned above. But the
consequences extend to positive masses as well. Congjderimfinitesmal rotation on the up

guark alone, we have
dz

= =0 19
By o (19)



This means that correlators of

S S wd (1)) (20)
J

with any operators not involving the up quark field must vandgentically. This occurs configu-

ration by configuration and for any quark masses. As one el@amp

<w§<k>wd<k> zs<j>wJ<j>wu<j>> =0 (21)
J

requires a delicate cancellation of the expected contabdtom therg at large distances against
short distance physics. As the former contribution diverge the quark mass goes to zero, this
cancellation seems highly contrived and is unexpectedherdormulations. Note that for the
unextrapolated theory the cancellation occurs naturadlyvben the additional bosons of the 8
flavors. But the two flavor theory should only have one neyti@h.

| have argued that the extrapolation involved in extrapodethe staggered quark formulation of
lattice gauge theory to physical numbers of species is elylito become exact in the continuum
limit. The behavior in the chiral limit is incorrect at finitattice spacing, forcing unphysical
singularities. For all mass values, including where thesptat fermion determinant is positive
definite, certain non-trivial correlations are unexpelstéorced to vanish.

The approximation may still be reasonable for some obsé&samost particularly those in-
volving only flavor non-singlet particles. But any prediets for which anomalies are important
are particularly suspect. This includes tifemass, but also more mundane quantities such as the

lightest baryon mass, which in the chiral limit also receigenon-perturbative contribution.
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